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The Mc Cleland and Judd Approach:
Using "Four-corners" Data to Detect Non linearity and Nonadditivity

As Manly (1992) noted,.."in a multiple regression analysis, a single variable y is related

to two or more variables to see how Y is related to the X's" (1992). Problems can arise,

however, while interpreting results of data collected from observations that are not like those

from the population of interest (i.e., an atypical sample); or by failing to correctly specify the

functional form of the relationship between the predictors and the criterion variable. Two

examples of the latter are nonlinearity and nonadditivity. Nonlinearity in the model occurs when

the regression of y on at least one X variable depends upon the value of that variable (either

accelerating or decelerating. Cortina (1993) relates "... the possibility of nonlinear relationships

continues to go relatively unexplored. For this reason, interpretation of significant interaction

terms in multiple regression may be difficult ..." Budescu (1980) reported, "as the degree of

collinearity increases, the results of the analysis become more and more a function of the internal

relations between the predictors...". Saunders (1955) was first to devise a method to test

interactions (moderator effects) and called his invention "moderated multiple regression."

Customarily, it is necessary to test for an interaction (moderator effect) when the effect of one

variable, X, on a second variable, y, seems to depend on the level of a third variable, z. The

problem of nonadditivity in the model refers to a product term consisting of two predictors

multiplied together; creating a joint effect of these independent variables on the dependent

variable. Nonlinearity and nonadditivity are referred to as specification errors when there is a

lack of proper congruence between the sample regression model and the population. There exist

both true (correctly specified) and misspecified models. "The rub, however, is that the true model

is seldom, if ever , known" ( Pedhazur,1982).
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Detecting Non linearity and Nonadditivity

The analysis of interaction effects in multiple regression has received considerable

attention in recent years (e.g., Aiken & West, 1991; Jaccard & Wan, 1995; McClelland & Judd,

1993), although the methods for such analyses have been known for at least 40 years (Saunders,

1955). An interaction effect indicates that the relation between a criterion variable (Y) and a

predictor variable (X) varies as a function of some third variable (Z). This third variable is

commonly referred to as a moderator (Saunders, 1955). Moderator variables are common in

behavioral research (Baron & Kenny, 1986). For example, Perlin, Menagham, Lieberman, and

Mullen (1981) hypothesized moderating effects for both coping responses and social support, on

the relationship between stressful events and health. Similarly, Findley and Cooper (1983)

hypothesized that the relationship between locus of control and academic achievement is

moderated by demographic factors such as gender, race, and socio-economic status.

A statistical test for interaction (or moderator) effects is usually accomplished with

hierarchical multiple regression, in which differences in sample R2 values between an additive

model and a non- additive model are tested (equivalently, for a single moderator component, the

test of the regression weight for the product term may be used). Although alternative testing

procedures have been recommended in the literature, such procedures subsequently have been

shown to be incorrect (e.g., Cronbach, 1987; Dunlap & Kemery, 1987). As McClelland and Judd

(1993) asserted, there has been "no credible published refutation of the appropriateness of

[hierarchical multiple regression] as a test of moderator effects" (p. 377).

Problems with the valid identification of moderating variables have been noted by both

research methodologists and applied researchers. Some of the more frequently encountered
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difficulties in statistically detecting such effects in non-experimental research have been

attributed to measurement error (Dunlap & Kemery, 1988; Jaccard & Wan, 1995),

multicollinearity (Morris, Sherman & Mansfield, 1986), low residual variance of the product

term in the regression equation (McClelland & Judd, 1993), residual variance heterogeneity

(Alexander & DeShon, 1994), and even a natural consequence of multivariate normality (Fisicaro

& Tisak, 1994).

McClelland and Judd (1993) noted the relative ease with which interaction effects are

apparently detected in experimental research, in contrast with the difficulties of their detection in

field studies. These authors attributed the power deficits seen in field research to a lack of

residual variance in the product term used in moderated multiple regression, an effect attributable

to the use of nonoptimal distributions of regressor variables in field research. That is,

experimental research is characterized by observations occurring at extreme values of the

regressor variables, while field research is characterized by observations occurring at more

moderate values.

McClelland and Judd (1993) clearly warned against naive applications in field research of

their ideas. For example, artificially dichotomizing regressor variables does not make the

observations on those variables truely extreme. Further, Maxwell and Delaney (1993)

demonstrated that such dichotomization can easily distort the relationships between variables. A

second "unwise strategy" noted by McClelland and Judd is the collection of a random sample of

data in field research from which an approximately optimal subsample is obtained. This

subsample of data, from the four-corners of the bivariate distribution, is then analyzed using

moderated multiple regression. Although intuitively appealing to some extent, the use of such a
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subsample is likely to lead to even less statistical power (because of the smaller sample size) than

that obtained from the random sample itself (despite the nonoptimal distribution in the random

sample).

Although McClelland and Judd (1993) warned against the use of a 4-corners subsample

approach to moderated multiple regression, they did not present empirical evidence that such an

approach provides less power than the use of the full random sample. The present study was

designed to produce evidence of the extent of power loss that is associated with the subsample

strategy.

A Variety of Potential Regression Models

Consider a multiple regression equation, with two regressors X and Z. If the linear regression

model, y = a + (3,X + (32Z + E, is fit to a set of data, and inspection of (for example) partial

regression plots indicates departure from linearity, the researcher is not certain which of the

following models may accurately describe the relationship between the regressors and the

dependent variable:

a) y = a + 13 IX + (32Z + 133XZ + E (moderation)

b) y = a + 13 IX + (32Z + 133X2 + E (nonlinearity in X)

c) y = a + PIX + 132Z + (33Z2 + E (nonlinearity in Z)

d) y = a + 131X + 132Z + (33x2 + p4z2 + E (nonlinearity in X and Z)

e) y = a + PP( + P2Z + P3)0 + 134z2 +135)(z + E (nonlinearity and nonadditivity)

If a researcher lacks a theoretical reason for expecting a particular functional form of the

relationship, inspection of each model may be made to determine whether the nonlinear model or

6



5

the moderation model better describes the relationship between the regressors and the dependent

variables. The underlying relationship may be best represented by a moderated equation (model

a), suggesting that the relationship between the outcome variable and each of the regressors

depends on the value of the other regressor. In contrast, the underlying relations may be best

represented by a nonlinear relationship between one of the regressors and the criterion variable

(models b and c), by nonlinear relationships between both regressors and the criterion (model d),

or by a combination of nonlinearity and moderation (model e).

Selection of the wrong model based upon sample data may be considered a Type I error,

a Type II error, or a lack of specificity of the test used. For example, if the population from which

the sample was drawn is accurately characterized by a linear, additive model, the selection of any

nonlinear or nonadditive model (a through e) represents a Type I error. Conversely, a Type II

error may result if the population is best characterized by a nonlinear or nonadditive model, but

none of the nonlinear or nonadditive models provide a sufficient increase in R2 relative to the

additive model. Finally, if the population is best characterized by a nonlinear model, but the

researcher selects a moderated model based upon the sample data, a lack of specificity is evident.

A test with good specificity will lead to rejecting the null hypothesis associated with the actual

population model, but not rejecting null hypotheses associated with other models.

A number of factors are related to the lack of specificity in moderated multiple

regression, but probably the greatest contributor to such errors is the presence of measurement

error in the instruments used to represent the phenomenon being investigated. The importance of

measurement error in selecting the best-fitting model from competing models has been discussed

previously in great detail (cf., Busemeyer & Jones, 1983; MacCallum & Mar, 1995), particularly
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for those models that incorporate multiplicative composite terms. Essentially, the reliability of

the product terms is a joint function of the reliabilities of the components (X and Z) and the

correlation between the components.

If X and Z are not correlated, then the reliability of the product term (XZ) is equal to the

product of the separate reliabilties of X and Z. Thus, if the separate reliabilities of the component

terms are relatively high, then the reliability of the product term will be high. Conversely, low

component reliabilities will result in low composite reliability scores, and an increased

probability of committing a Type II error by not detecting an effect when one is present. As the

reliability of each component increases, the reliability of the composite increases and the Type II

error probability decreases.

This phenomena is also true of nonlinear effects. As has been pointed out by Shepperd

(1991), the quadratic composite term in a regression model would also suffer from unreliability if

the component terms were unreliable, the reliability of the composite term X' being equal to the

square of the reliability of X. The effects of such unreliability on the quadratic term are the same

as the effects on the cross-product term noted above -- a reduction in statistical power and a

concomitant increase in the probability of a Type II error.

The reliability problem is compounded when the regressor variables are correlated with

each other. As has been noted many times, as the correlation between X and Z increases, the

quadratic term (X2) and the interaction term (XZ) will share substantial variance and will become

more difficult to differentiate.
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Method

The effectiveness of the 4-corners subsample procedure was investigated through a

Monte Carlo study which used regression models to generate data from populations evidencing

(a) linear, (b) non-linear, and (c) non-additive relationships. In addition to the functional form of

relationship characteristic of the population, five factors were manipulated in the study: (a) the

correlation between the regressor variables, (b) the overall population R2 of the additive

component of the regression model, (c) the effect size of the non-linear or interaction terms (X2,

Z2, and XZ), (d) the reliabilities of the regressors, and (e) sample size. Only models with two

regressor variables were included in the study.

The magnitude of the correlation between the two regressors was controlled at levels

ranging from .00 to .90. Four levels of R2 of the additive component of the population models

were examined: .02, .13, .26, and .50. The first three levels represent small, medium, and large

effect sizes for the population R2, corresponding to f2 values of .02, .15, and .35 (Cohen, 1988).

The population R2 value of .50 was included based upon the review of correlational studies

conducted by Jaccard and Wan (1995). In this review, the 75th percentile of the distribution of

sample R2s found in the psychological literature was .50. The magnitudes of the interaction

component or the non-linearity component were controlled at four levels, representing small,

medium, and large effect sizes (Cohen, 1988), as well as a null condition.

Measurement error was simulated in the data (following the procedure used by Maxwell,

Delaney & Dill, 1984; and by Jaccard & Wan, 1995) by generating four normally distributed

random variables for each observation (two to represent "true scores" on the regressors, and two

to represent errors of measurement). Fallible, observed scores on the regressors were calculated
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(under "classical" measurement theory) as the sum of the true and error variables. The

reliabilities of the regressors were controlled by adjusting the error variances relative to the true

score variances. Reliabilities were examined ranging from .40 to 1.00.

Sample sizes of 60, 175 and 400 were used. The larger two of these values represent the

median and 75th percentile of sample sizes found in Jaccard and Wan's (1995) review of

correlational studies in psychology. The small sample size (n = 60) was included to extend the

results to small sample analyses. Five thousand samples of each size were generated for each

condition in the Monte Carlo study. The use of five thousand replications provide maximum 95%

confidence intervals off .014 around the observed proportion of null hypotheses rejected.

For each sample, the entire sample was analyzed using moderated multiple regression,

then a 4-corners subsample was extracted. The subsample was selected by retaining only the

most extreme 10% of the observations from each corner of the sample bivariate distribution. The

4-corners subsample was then analyzed using moderated multiple regression. The moderated

multiple regression strategy involved fitting four models to each sample (and each 4-corners

subsample): a linear additive model, a model nonlinear in XI, a model nonlinear in X2, and a

nonadditive model. Tests for the presence of nonlinearity and nonadditivity were conducted by

testing the statistical significance of the nonlinear or nonadditive term.

The Monte Carlo study was conducted using SAS, Versions 6.06 and 6.08. The

components of the program were verified by comparing the results with the standard SAS output

for benchmark data sets.

Results and Discussion

In total, 2304 conditions were examined in the Monte Carlo study (i.e., three models,

four levels of population R2, four levels of regressor correlation, four levels of regressor
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reliability, three levels of sample size, and four levels of effect size for the nonlinear or

nonadditive component). To conserve space, and because the results were substantively

consistent across levels of these design factors, only summary results will be presented here.

Complete results, however, are available from the authors.

The results will be presented in terms of the proportion of samples in which the correct

population model was identified (i.e., a linear-additive model, a nonadditive model, or a model

nonlinear in X1), and the proportion of samples in which an incorrect model was identified. Such

proportions are related to, respectively, the sensitivity and the specificity of these analysis

strategies. Because the tests for nonlinearity and nonadditivity were conducted independently of

each other, an individual sample may lead to a rejection of more than one of the null hypotheses.

Thus, a single sample may suggest either nonlinearity or nonadditivity.

The results for the linear-additive models are presented in Table 1. This table presents,

each nominal alpha level, the proportion of samples that were identified as evidencing

nonadditivity or nonlinearity in either X1 or X2. Any of these model identifications represent

Type I errors in the rejection of the null hypothesis of no change in the model R2 relative to a

linear-additive model. As is evident in this table, the Type I error rate was well controlled

whether the complete sample was analyzed or whether the 4-corners of the data were used. In

each condition, and for each nominal alpha level, the proportion of samples that led to a rejection

of the null hypothesis was very close to the nominal level of alpha. In addition to verifying the

Type I error control of these methods of analysis, these results provide a check on the integrity of

the computer code written for the Monte Carlo study.

T1
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Insert Table 1 about here

The results for the nonadditive population models are presented in Table 2. The

proportions presented in this table represent either statistical power (i.e., the proportion of

samples in which the nonadditive model was identified based upon the sample data), or

misidentification rates (i.e., the proportion of samples in which each of the nonlinearity null

hypotheses was rejected). For example, the first row of Table 2 reports the overall results with a

population R2 of .02 when data were generated from a nonadditive population model. For these

samples, with a nominal alpha level of .10, the moderated regression model was identified in

72.9% of the samples when all of the sample data were included in the regression (i.e., a power

estimate of .729). However, in 40.3% of these samples, a regression model that was nonlinear in

XI also fit the data statistically significantly better than the linear-additive model, and in 40.6%

of the samples a model that was nonlinear in X2 also fit better than the linear-additive model.

Thus, researchers testing hypotheses about these models would misidentify the population model

at rates of greater than .40. In contrast, when only the 4-corners of the samples are used for the

regression analyses, the correct model was identified in 70.1% of the samples, providing slightly

less power than was obtained with the use of the full samples. However, the estimated rate of

misidentifying the model as nonlinear were also lower than those obtained with the full samples

(giving estimates of .360 for nonlinear X' and .361 for nonlinear X2. Both the statistical power

and Type I error rate estimates remained relatively stable across levels of R2 in the population. In

each case, the use of the full samples provided greater statistical power, but such power



advantages were accompanied by greater probabilities of misidentifying the population as

nonlinear.

Insert Table 2 about here

11

A similar result was obtained for the level of correlation between the regressors. Across

all levels, the use of the full model provided greater statistical power but higher misidentification

rates. In contrast the effects of population R2, the level of correlation between the regressors

affected both the power and the Type I error rates of these tests. Specifically, as the correlation

between the regressors increased, the statistical power increased for both full sample and four-

corners strategies. However, a concomitant decrease in the specificity was also evident for both

strategies. For example, at a nominal alpha level of .05, when the regressors were uncorrelated,

the power of the full sample analysis was .614 while that of the 4-corners analysis was .591.

Both analysis strategies also evidenced low levels of model misidentification, with the nonlinear

XI model identified only 8.5% of the time with the full samples and only 7.7% of the time with

the 4-corners. In contrast, when the level of correlation between the regressors was .80, the

power to detect the moderating model increased to .733 for the full samples and to .680 for the 4-

corners. However, the misidentification rate increased to 64.5% for the full samples and to

56.9% for the four corners.

The effect of regressor reliability was similar to that of regressor intercorrelation

although the effect was smaller in magnitude. That is, increasing regressor reliability led to

increasing the power in the test for the moderating model, but also led to increasing

13



12

misidentification rates. For example, at a nomina alpha level of .05, when the regressor

reliability was .40, the power of the full sample analysis was .452 while that the 4-corners

analysis was .413. Both analysis strategies also evidenced relatively low levels of model

misidentification, with the nonlinear X1 model identified only 20.0% of the time with the full

samples and only 14.8% of the time with the 4-corners. In contrast, when the reliability of the

regressors was 1.00, the power to detect the moderating model increased to .814 for the full

samples and to .789 for the 4-corners. However, the misidentification rate increased to 44.6% for

the full samples and to 41.3% for the four-corners.

Finally, as should be expected, increasing sample sizes or increasing the population

effect sizes led to increases in power of the test for the moderated regression model, but

concommittant increases in the rates of misidentifying the model. Such effects were evident for

both the full samples analyses and the 4-corners analyses. In all conditions, however, the power

of the full sample analyses was greater than that of the four-corners.

The results for the nonlinear X1 population models are presented in Table 3. As with the

results presented in Table 2, the proportions presented in this table represent either statistical

power (i.e., the proportion of times in which the nonlinear X1 model was identified based upon

the sample data), or misidentification rates (i.e., the proporation of samples in which the null

hyupothesis of nonadditivity or the null hypothesis of nonlinearity in X' were rejected).

Insert Table 3 about here
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The results for the nonlinear population models were nearly identical to those for the

nonadditive models. That is, the use of the full samples was assocaited with greater statistical

power but also with higher rates of misidentification. For both the full sample and the 4-corners

strategies, the power increased with increasing correlation between regressors, with increasing

reliability of regressors, with increasing sample size and with increasing effect size. However,

while these factors lead to greater statistical power, they also led to higher rates of

misidentification.

The results suggest that the use of the 4-corners strategy rather than the full sample

analysis has both benefits and costs. Specifically, the 4-corners strategy evidenced better

specificity (i.e., lower misidentification rates), but at the expense of reduced statistical power , or

sensitivity, relative to the full sample analysis. Despite the improved specificity of the 4-corners

approach, the model misidentifacation rates were distressingly high in many of the conditions

examined. With increasing regressor intercorrelations, increasing reliablility of regressors,

increasing sample size and increasing effect size, the probabilities of rejecting null hypotheses

associated with the incorrect functional form of the model increased along with the statistical

power of the test for the correct functional form. Thus, the utility of either the 4-corners

approach or the full sample approach for testing theory is limited.

For example, in applied research, if a particular theory suggests that a nonadditive model

should be present in a population, researchers may collect a sample of data from that population

and test the null huypothesis of nonadditivity in the sample. If the theory is correct, the use of the

full sample will lead to a greater chance of identifying the nonadditivity (i.e., researchers will

have more statistical power by using the full sample rather than the four-corners). However, if
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the theory is wrong and the population actually evidences nonlinearity rather than nonadditivity,

then the use of the full sample will lead to a greater chance of misidentifying the model as

nonadditive. That is the full sample analysis is more likely to provide support for a theory which

is wrong, while the subsample approach is less likely to support such a theory. However, in

many conditions neither approach should provide prudent researchers with much confidence that

the correct model has been identified.

1. 6



15

REFERENCES

Aiken, L. & West, S. (1991). Multiple regression. Newbury Park, CA: Sage.

Alexander, R. A. & DeShon, R. P. (1994). Effect of error variance heterogeneity on the power
of tests for regression slope differences. Psychological Bulletin, 115, 308-314.

Bradley, R.A., & Srivastava, S.S. (1979). Correlation in polynomial regression. The
American Statistician, 33, 11-14.

Budescu, D.V. (1980). A note on polynomial regression. Multivariate Behavioral Research,
15, 497-508.

Busemeyer, J. R. & Jones, L. E. (1983). Analysis of multiplicative combination rules when
the causal variables are measured with error. Psychological Bulletin. 93, 549-562.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale,
NJ: Lawrence Erlbaum Associates.

Cohen, J. (1978). Partialled products are interactions; Partialled powers are curve
components. Psychological Bulletin, 85(4), 858-866.

Cortina, J. (1993). Interaction, nonlinearity, and multicollinearity: Implications for multiple
regression. Journal of Management, 14(4), 915-922.

Cronbach, L. J. (1987). Statistical tests for moderator variables: Flaws in analyses recently
proposed. Psychological Bulletin, 102, 414-417.

Dunlap, W. P. & Kemery, E. R. (1987). Failure to detect moderating effects: Is
multicollinearity the problem? Psychological Bulletin, 102, 418-420.

Dunlap, W. P. & Kemery, E. R. (1988). Effects of predictor intercorrelations and reliabilities
on moderated multiple regression. Organizational Behavior and Human Decision Processes. 41,
248-258.

Findley, M. J. & Cooper, H. M. (1983). Locus of control and academic achievement: A
literature review. Journal of Personality and Social Psychology. 44, 419-427.

Fisicaro, S. A. & Tisak, J. (1994). A theoretical note on the stochastics of moderated multiple
regression. Educational and Psychological Measurement. 54, 32-41.

Jaccard, J. & Wan, C. K. (1995). Measurement error in the analysis of interaction effects
between continuous predictors using multiple regression: Multiple indicator and structural equation
approaches. Psychological Bulletin. 117, 348-357.

L7



16

Mac Callum, R. C. & Mar, C. M. (1995). Distinguishing between moderator and
quadratic effects in multiple regression. Psychological Bulletin. 118, 405-421.

Manly, B.F., (1994). Multivariate statistical methods: A primer. London, United
Kingdom: Chapman & Hall.

Maxwell, S. E., Delaney, H. D., & Dill, C. A. (1984). Another look at ANCOVA versus
blocking. Psychological Bulletin. 95, 136-147.

McClelland, G.H., & Judd, C.M. (1993). Statistical difficulties of detecting interactions
and moderator effects. Psychological Bulletin, 114(2), 376-390.

Morris, J. H., Sherman, J. D., & Mansfield, E. R. (1986). Failures to detect moderating
effects with ordinary least squares -- moderated multiple regression: Some reasons and a remedy.
Psychological Bulletin. 99, 282-288.

Pedhazur, E. (1982). Multiple regression in behavioral research, (2nd ed.). New York,
NY: CBS College Publishing.

Perlin, L. I., Menagham, E. G., Lieberman, M. A. & Mu llan, J. T. (1981). The stress
process. Journal of Health and Social Behavior, 22, 337-356.

Pooch, U.W., & Wall, J.A. (1993). Discrete event simulation: A Practical approach.
Boca Raton, FL: CRC Press.

SAS Institute, Inc., (1996). Multivariate statistical methods: Practical applications.
Carey, N.C.: SAS Institute, Inc.

Saunders, D.R. (1955). The "Moderator Variable" as a useful tool in prediction.
Proceedings of the 1954 Invitational conference on Testing Problems, 54-58. Princeton, NJ:
Educational Testing Service.

Shepperd, J. A. (1991). Cautions in assessing spurious "moderator effects."
Psychological Bulletin. 110. 315-317.

Thompson. B. (January, 1989). Heuristics for understanding the concepts of interaction,
polynomial trend, and the general linear model. Paper presented at the annual meeting of of the
Southwest Educational Research Association, Houston, Texas.



T
a
b
l
e
 
1

S
u
m
m
a
r
y
 
R
e
s
u
l
t
s
 
f
o
r
 
L
i
n
e
a
r
 
P
o
p
u
l
a
t
i
o
n
 
M
o
d
e
l
s
.

A
l
p
h
a
 
=
 
.
1
0

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

P
o
p
u
l
a
t
i
o
n

R
-
S
q
u
a
r
e

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

.
0
2

0
.
1
0
0

0
.
1
0
1

0
.
1
0
0

0
.
1
0
0

0
.
1
0
1

0
.
1
0
1

.
1
3

0
.
0
9
9

0
.
0
9
9

0
.
0
9
9

0
.
1
0
0

0
.
0
9
9

0
.
1
0
0

.
2
6

0
.
0
9
9

0
.
0
9
9

0
.
1
0
1

0
.
1
0
0

0
.
1
0
0

0
.
1
0
1

.
5
0

0
.
0
9
9

0
.
0
9
9

0
.
1
0
1

0
.
0
9
9

0
.
0
9
9

0
.
1
0
1

A
l
p
h
a
 
=
 
.
0
5

A
l
p
h
a
 
=
 
.
0
1

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

0
.
0
5
0

0
.
0
5
1

0
.
0
5
0

0
.
0
5
0

0
.
0
5
0

0
.
0
5
0

0
.
0
1
0

0
.
0
1
0

0
.
0
5
0

0
.
0
5
0

0
.
0
4
9

0
.
0
5
0

0
.
0
5
0

0
.
0
5
0

0
.
0
1
0

0
.
0
1
0

0
.
0
4
9

0
.
0
4
9

0
.
0
5
0

0
.
0
5
0

0
.
0
5
0

0
.
0
5
0

0
.
0
1
0

0
.
0
1
0

0
.
0
4
9

0
.
0
4
9

0
.
0
5
0

0
.
0
5
0

0
.
0
4
9

0
.
0
5
0

0
.
0
1
0

0
.
0
1
0

X
2
2

M
o
d
.

X
1
2

X
2
2

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

A
l
p
h
a
 
=
 
.
1
0

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

A
l
p
h
a
 
=
 
.
0
5

A
l
p
h
a
 
=
 
.
0
1

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

C
o
r
r
e
l
a
t
i
o
n

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

B
e
t
w
e
e
n

R
e
g
r
e
s
s
o
r
s

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

0
.
0
4
9

0
.
0
4
9

0
.
0
5
0

0
.
0
5
0

0
.
0
5
0

0
.
0
5
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
5
0

0
.
0
5
0

0
.
0
5
1

0
.
0
5
0

0
.
0
5
0

0
.
0
5
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
4
9

0
.
0
4
9

0
.
0
4
9

0
.
0
5
0

0
.
0
5
0

0
.
0
5
1

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
5
0

0
.
0
5
0

0
.
0
5
0

0
.
0
5
0

0
.
0
4
9

0
.
0
5
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

.
0
0

0
.
1
0
0

0
.
1
0
0

0
.
0
9
9

0
.
1
0
0

0
.
0
9
9

0
.
1
0
0

.
2
0

0
.
1
0
0

0
.
1
0
0

0
.
1
0
0

0
.
1
0
0

0
.
1
0
0

0
.
1
0
0

.
4
0

0
.
0
9
9

0
.
0
9
9

0
.
1
0
0

0
.
1
0
0

0
.
1
0
0

0
.
1
0
1

.
8
0

0
.
1
0
0

0
.
0
9
9

0
.
1
0
1

0
.
1
0
0

0
.
0
9
9

0
.
1
0
1

R
e
g
r
e
s
s
o
r

R
e
l
i
a
b
i
l
i
t
y

A
l
p
h
a
 
=
 
.
1
0

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
.

X
1
2

1
X
2
2
2

^
M
o
d
.

X
1
2

1
X
2
2

0
.
4
0

0
.
1
0
0

0
.
0
9
9

0
.
1
0
0

0
.
1
0
0

0
.
0
9
9

0
.
1
0
1

0
.
6
0

0
.
1
0
0

0
.
0
9
9

0
.
1
0
1

0
.
1
0
0

0
.
1
0
0

0
.
1
0
0

0
.
8
0

0
.
0
9
9

0
.
1
0
0

0
.
1
0
0

0
.
0
9
9

0
.
1
0
0

0
.
1
0
0

1
.
0
0

0
.
0
9
9

0
.
0
9
9

0
.
1
0
0

0
.
1
0
0

0
.
1
0
0

0
.
1
0
1

A
l
p
h
a
 
=
 
.
0
5

A
l
p
h
a
 
=
 
.
0
1

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
.

X
1
2

X
22

M
o
d
.

X
1
2

X
2
2

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
.

X
1
2

1
X

22
M
o
d
.

X
1
2

X
22

0.
05

0
0.

05
0

0.
05

0
0.

05
0

0.
05

0
0.

05
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
5
0

0
.
0
4
9

0
.
0
5
0

0
.
0
5
0

0
.
0
5
0

0
.
0
5
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
4
9

0
.
0
4
9

0
.
0
5
0

0
.
0
4
9

0
.
0
5
0

0
.
0
4
9

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
0
9

0
.
0
1
0

0
.
0
4
9

0
.
0
5
0

0
.
0
4
9

0
.
0
5
1

0
.
0
5
0

0
.
0
5
1

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

S
a
m
p
l
e

S
i
z
e

A
l
p
h
a
 
=
 
.
1
0

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
od

.
xl

2
X

22
M
o
d
.

X
1
2

X
22

6
0

0
.
0
9
9

0
.
0
9
9

0
.
1
0
0

0
.
1
0
0

0
.
0
9
9

0
.
1
0
1

1
7
5

0
.
1
0
0

0
.
1
0
0

0
.
1
0
0

0
.
1
0
0

0
.
1
0
0

0
.
1
0
1

4
0
0

0
.
0
9
9

0
.
0
9
9

0
.
1
0
0

0
.
1
0
0

0
.
0
9
9

0
.
0
9
9

A
l
p
h
a
 
=
 
.
0
5

A
l
p
h
a
 
=
 
.
0
1

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
.

X
1
2

X
22

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

0
.
0
5
0

0
.
0
4
9

0
.
0
5
0

0
.
0
5
0

0
.
0
5
0

0
.
0
5
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
4
9

0
.
0
5
0

0
.
0
5
0

0
.
0
5
0

0
.
0
5
0

0
.
0
5
1

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
5
0

0
.
0
4
9

0
.
0
5
0

0
.
0
5
0

0
.
0
4
9

0
.
0
4
9

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

0
.
0
1
0

N
o
t
e
.
 
F
o
r
 
m
o
d
e
l
s
 
i
d
e
n
t
i
f
i
e
d
,
 
M
o
d
 
=
 
n
o
n
a
d
d
i
t
i
v
e
 
m
o
d
e
l
,
 
X
1
2
 
=
 
n
o
n
l
i
n
e
a
r
 
X
1
 
m
o
d
e
l
,
 
X
2
2
 
=
 
n
o
n
l
i
n
e
a
r
 
X
2
 
m
o
d
e
l

9
B

E
ST

 C
O

PY
 A

V
A

IL
A

B
L

E
2



T
a
b
l
e
 
2

S
u
m
m
a
r
y
 
R
e
s
u
l
t
s
 
f
o
r
 
N
o
n
a
d
d
i
t
i
v
e
 
P
o
p
u
l
a
t
i
o
n
 
M
o
d
e
l
s
.

A
l
p
h
a
 
=
 
.
1
0

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

A
l
p
h
a
 
=
 
.
0
5

A
l
p
h
a
 
=
 
.
0
1

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

P
o
p
u
l
a
t
i
o
n

R
-
S
q
u
a
r
e

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

.
0
2

0
.
7
2
9

0
.
4
0
6

0
.
4
0
6

0
.
7
0
1

0
.
3
6
0

0
.
3
6
1

0
.
6
7
1

0
.
3
3
7

0
.
3
3
7

0
.
6
3
7

0
.
2
8
9

0
.
2
9
0

0
.
5
6
1

0
.
2
3
8

0
.
2
3
8

0
.
5
1
6

0
.
1
9
1

0
.
1
9
1

.
1
3

0
.
7
2
3

0
.
4
0
3

0
.
4
0
3

0
.
6
9
5

0
.
3
5
8

0
.
3
5
8

0
.
6
6
4

0
.
3
3
4

0
.
3
3
4

0
.
6
3
0

0
.
2
8
7

0
.
2
8
7

0
.
5
5
3

0
.
2
3
5

0
.
2
3
5

0
.
5
0
9

0
.
1
8
9

0
.
1
8
9

.
2
6

0
.
7
1
5

0
.
3
9
8

0
.
3
9
8

0
.
6
8
7

0
.
3
5
4

0
.
3
5
4

0
.
6
5
6

0
.
3
2
9

0
.
3
2
9

0
.
6
2
2

0
.
2
8
4

0
.
2
8
4

0
.
5
4
5

0
.
2
3
1

0
.
2
3
1

0
.
5
0
0

0
.
1
8
6

0
.
1
8
7

.
5
0

0
.
6
9
2

0
.
3
8
6

0
.
3
8
4

0
.
6
6
4

0
.
3
4
5

0
.
3
4
4

0
.
6
3
1

0
.
3
1
7

0
.
3
1
6

0
.
5
9
7

0
.
2
7
4

0
.
2
7
4

0
.
5
1
7

0
.
2
1
9

0
.
2
1
9

0
.
4
7
5

0
.
1
7
8

0
.
1
7
8

C
o
r
r
e
l
a
t
i
o
n

B
e
t
w
e
e
n

R
e
g
r
e
s
s
o
r
s

A
l
p
h
a
 
=
 
.
1
0

A
l
p
h
a
 
=
 
.
0
5

A
l
p
h
a
 
=
 
.
0
1

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

.
0
0

0
.
6
7
8

0
.
1
4
7

0
.
1
4
6

0
.
6
5
9

0
.
1
3
7

0
.
1
3
7

0
.
6
1
4

0
.
0
8
5

0
.
0
8
4

0
.
5
9
1

0
.
0
7
7

0
.
0
7
7

0
.
4
9
6

0
.
0
2
5

0
.
0
2
5

0
.
4
6
7

0
.
0
2
1

0
.
0
2
1

.
2
0

0
.
6
8
7

0
.
2
7
4

0
.
2
7
3

0
.
6
6
6

0
.
2
3
6

0
.
2
3
6

0
.
6
2
4

0
.
1
9
8

0
.
1
9
7

0
.
5
9
8

0
.
1
6
3

0
.
1
6
2

0
.
5
0
8

0
.
0
9
9

0
.
0
9
9

0
.
4
7
4

0
.
0
7
2

0
.
0
7
2

.
4
0

0
.
7
1
1

0
.
4
6
7

0
.
4
6
7

0
.
6
8
3

0
.
4
0
5

0
.
4
0
5

0
.
6
5
1

0
.
3
9
0

0
.
3
8
9

0
.
6
1
7

0
.
3
2
6

0
.
3
2
6

0
.
5
3
9

0
.
2
6
8

0
.
2
6
7

0
.
4
9
5

0
.
2
0
6

0
.
2
0
6

.
8
0

0
.
7
8
3

0
.
7
0
5

0
.
7
0
5

0
.
7
3
9

0
.
6
3
8

0
.
6
3
9

0
.
7
3
3

0
.
6
4
5

0
.
6
4
5

0
.
6
8
0

0
.
5
6
9

0
.
5
7
0

0
.
6
3
3

0
.
5
3
2

0
.
5
3
3

0
.
5
6
5

0
.
4
4
6

0
.
4
4
6

A
l
p
h
a
 
=
 
.
1
0

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

A
l
p
h
a
 
=
 
.
0
5

A
l
p
h
a
 
=
 
.
0
1

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

R
e
g
r
e
s
s
o
r

R
e
l
i
a
b
i
l
i
t
y

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

0
.
4
0

0
.
5
3
1

0
.
2
7
1

0
.
2
7
1

0
.
4
9
7

0
.
2
1
8

0
.
2
1
7

0
.
4
5
2

0
.
2
0
0

0
.
1
9
9

0
.
4
1
3

0
.
1
4
8

0
.
1
4
8

0
.
3
1
8

0
.
1
1
0

0
.
1
1
0

0
.
2
7
4

0
.
0
6
8

0
.
0
6
7

0
.
6
0

0
.
6
8
7

0
.
3
6
6

0
.
3
6
6

0
.
6
5
4

0
.
3
1
4

0
.
3
1
4

0
.
6
2
1

0
.
2
9
4

0
.
2
9
4

0
.
5
8
3

0
.
2
4
1

0
.
2
4
1

0
.
5
0
2

0
.
1
9
4

0
.
1
9
5

0
.
4
5
3

0
.
1
4
4

0
.
1
4
4

0
.
8
0

0
.
7
8
7

0
.
4
4
5

0
.
4
4
5

0
.
7
6
1

0
.
4
0
4

0
.
4
0
4

0
.
7
3
5

0
.
3
7
6

0
.
3
7
6

0
.
7
0
2

0
.
3
3
2

0
.
3
3
2

0
.
6
2
9

0
.
2
7
3

0
.
2
7
4

0
.
5
8
4

0
.
2
2
6

0
.
2
2
7

1
.
0
0

0
.
8
5
4

0
.
5
1
1

0
.
5
1
0

0
.
8
3
5

0
.
4
8
2

0
.
4
8
2

0
.
8
1
4

0
.
4
4
6

0
.
4
4
5

0
.
7
8
9

0
.
4
1
3

0
.
4
1
3

0
.
7
2
7

0
.
3
4
6

0
.
3
4
5

0
.
6
9
0

0
.
3
0
7

0
.
3
0
7

B
E

ST
 C

O
PY

 A
V

A
IL

A
B

L
E

N
o
t
e
.
 
F
o
r
 
m
o
d
e
l
s

M
o
d
 
=
 
n
o
n
a
d
d
i
t
i
v
e
 
m
o
d
e
l
,
 
X
1
2
 
=
 
n
o
n
l
i
n
e
a
r
 
X
1
 
m
o
d
e
l
,
 
X
2
2
 
=
 
n
o
n
l
i
n
e
a
r
 
X
2
 
m
o
d
e
l

22



T
a
b
l
e
 
2
 
(
C
o
n
t
i
n
u
e
d
)

S
u
m
m
a
r
y
 
R
e
s
u
l
t
s
 
f
o
r
 
N
o
n
a
d
d
i
t
i
v
e
 
P
o
p
u
l
a
t
i
o
n
 
M
o
d
e
l
s
.

A
l
p
h
a
 
=
 
.
1
0

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

A
l
p
h
a
 
=
 
.
0
5

A
l
p
h
a
 
=
 
.
0
1

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
t
e
 
A
n
a
l
y
s
i
s

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

S
a
m
p
l
e

S
i
z
e

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

6
0

0
.
5
3
0

0
.
2
7
9

0
.
2
7
8

0
.
4
8
7

0
.
2
4
1

0
.
2
4
1

0
.
4
5
0

0
.
2
0
7

0
.
2
0
6

0
.
3
9
8

0
.
1
6
9

0
.
1
6
9

0
.
3
1
2

0
.
1
1
4

0
.
1
1
4

0
.
2
4
8

0
.
0
8
0

0
.
0
8
0

1
7
5

0
.
7
4
5

0
.
4
0
5

0
.
4
0
5

0
.
7
1
9

0
.
3
5
9

0
.
3
5
9

0
.
6
8
7

0
.
3
3
5

0
.
3
3
4

0
.
6
5
6

0
.
2
8
7

0
.
2
8
7

0
.
5
7
5

0
.
2
3
3

0
.
2
3
2

0
.
5
3
4

0
.
1
8
7

0
.
1
8
7

4
0
0

0
.
8
6
9

0
.
5
1
0

0
.
5
1
0

0
.
8
5
4

0
.
4
6
2

0
.
4
6
3

0
.
8
3
0

0
.
4
4
6

0
.
4
4
6

0
.
8
1
1

0
.
3
9
5

0
.
3
9
5

0
.
7
4
5

0
.
3
4
6

0
.
3
4
6

0
.
7
1
8

0
.
2
9
2

0
.
2
9
3

E
f
f
e
c
t

S
i
z
e

A
l
p
h
a
 
=
 
.
1
0

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
.

X
1
2

1
X
2
2

A
l
p
h
a
 
=
 
.
0
5

A
l
p
h
a
 
=
 
.
0
1

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

0
.
0
2

0
.
4
2
2

0
.
2
1
9

0
.
2
1
9

0
.
3
9
2

0
.
1
9
9

0
.
1
9
9

0
.
3
2
9

0
.
1
4
9

0
.
1
4
9

0
.
2
9
8

0
.
1
3
0

0
.
1
3
1

0
.
1
8
3

0
.
0
6
6

0
.
0
6
6

0
.
1
5
6

0
.
0
5
3

0
.
0
5
3

0
.
1
5

0
.
8
1
5

0
.
4
4
2

0
.
4
3
9

0
.
7
8
3

0
.
3
9
3

0
.
3
9
1

0
.
7
6
1

0
.
3
7
0

0
.
3
6
8

0
.
7
2
2

0
.
3
1
9

0
.
3
1
8

0
.
6
4
6

0
.
2
6
2

0
.
2
6
2

0
.
5
9
3

0
.
2
1
2

0
.
2
1
2

0
.
3
5

0
.
9
0
7

0
.
5
3
4

0
.
5
3
5

0
.
8
8
5

0
.
4
7
1

0
.
4
7
2

0
.
8
7
6

0
.
4
6
9

0
.
4
7
0

0
.
8
4
5

0
.
4
0
2

0
.
4
0
2

0
.
8
0
3

0
.
3
6
5

0
.
3
6
5

0
.
7
5
2

0
.
2
9
4

0
.
2
9
4

B
E

ST
 C

O
PY

A
V

A
IL

A
B

LE

N
o
t
e
.
 
F
o
r
 
m
o
d
e
l
s
 
i
d
e
n
t
i
f
i
e
d
,
 
M
o
d
 
=
 
n
o
n
a
d
d
i
t
i
v
e
 
m
o
d
e
l
,
 
X
1
2
 
=
 
n
o
n
l
i
n
e
a
r
 
X
1
 
m
o
d
e
l
,
 
X
2
2
 
=
 
n
o
n
l
i
n
e
a
r
 
X
2
 
m
o
d
e
l

23
24



T
a
b
l
e
 
3

S
u
m
m
a
r
y
 
R
e
s
u
l
t
s
 
f
o
r
 
N
o
n
l
i
n
e
a
r
 
P
o
p
u
l
a
t
i
o
n
 
M
o
d
e
l
s
. A
l
p
h
a
 
=
 
.
1
0

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

A
l
p
h
a
 
=
 
.
0
5

A
l
p
h
a
 
=
 
.
0
1

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

P
o
p
u
l
a
t
i
o
n

R
-
S
q
u
a
r
e

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

.
0
2

0
.
5
0
4

0
.
7
7
9

0
.
2
6
2

0
.
4
0
4

0
.
6
7
8

0
.
2
4
8

0
.
4
4
3

0
.
7
2
8

0
.
2
0
1

0
.
3
3
3

0
.
6
1
3

0
.
1
8
2

0
.
3
5
1

0
.
6
2
8

0
.
1
3
0

0
.
2
2
9

0
.
4
9
2

0
.
1
0
3

.
1
3

0
.
4
6
5

0
.
7
7
6

0
.
2
6
1

0
.
4
0
4

0
.
6
7
7

0
.
2
4
9

0
.
3
9
7

0
.
7
2
6

0
.
2
0
1

0
.
3
3
3

0
.
6
1
2

0
.
1
8
1

0
.
2
9
5

0
.
6
2
7

0
.
1
2
8

0
.
2
2
9

0
.
4
9
3

0
.
1
0
2

.
2
6

0
.
4
6
0

0
.
7
7
0

0
.
2
5
9

0
.
4
0
0

0
.
6
7
0

0
.
2
4
6

0
.
3
9
2

0
.
7
1
8

0
.
1
9
8

0
.
3
2
9

0
.
6
0
5

0
.
1
7
9

0
.
2
9
0

0
.
6
1
8

0
.
1
2
6

0
.
2
2
5

0
.
4
8
5

0
.
1
0
1

.
5
0

0
.
4
4
5

0
.
7
4
8

0
.
2
5
3

0
.
3
8
8

0
.
6
5
0

0
.
2
4
0

0
.
3
7
7

0
.
6
9
4

0
.
1
9
3

0
.
3
1
6

0
.
5
8
3

0
.
1
7
4

0
.
2
7
6

0
.
5
9
2

0
.
1
2
1

0
.
2
1
5

0
.
4
6
3

0
.
0
9
7

C
o
r
r
e
l
a
t
i
o
n

B
e
t
w
e
e
n

R
e
g
r
e
s
s
o
r
s

A
l
p
h
a
 
=
 
.
1
0

A
l
p
h
a
 
=
 
.
0
5

A
l
p
h
a
 
=
 
.
0
1

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
.

X
1
2

X
2

-
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

.
0
0

0
.
1
9
5

0
.
7
6
5

0
.
1
0
0

0
.
1
4
1

0
.
6
5
2

0
.
1
8
2

0
.
1
3
1

0
.
7
1
2

0
.
0
5
0

0
.
0
8
1

0
.
5
8
6

0
.
1
1
1

0
.
0
6
4

0
.
6
1
1

0
.
0
1
0

0
.
0
2
2

0
.
4
6
6

0
.
0
3
4

.
2
0

0
.
3
5
2

0
.
7
6
8

0
.
1
1
2

0
.
2
6
6

0
.
6
5
8

0
.
1
4
2

0
.
2
7
6

0
.
7
1
7

0
.
0
5
9

0
.
1
8
8

0
.
5
9
2

0
.
0
7
9

0
.
1
7
0

0
.
6
1
6

0
.
0
1
4

0
.
0
8
8

0
.
4
7
0

0
.
0
2
0

.
4
0

0
.
5
5
6

0
.
7
6
8

0
.
2
0
5

0
.
4
7
2

0
.
6
6
6

0
.
1
2
2

0
.
4
8
4

0
.
7
1
7

0
.
1
3
5

0
.
3
9
0

0
.
6
0
0

0
.
0
6
6

0
.
3
6
2

0
.
6
1
6

0
.
0
5
4

0
.
2
5
8

0
.
4
8
0

0
.
0
1
7

.
8
0

0
.
7
7
1

0
.
7
7
2

0
.
6
1
9

0
.
7
1
6

0
.
6
9
8

0
.
5
3
7

0
.
7
1
8

0
.
7
2
1

0
.
5
4
9

0
.
6
5
3

0
.
6
3
5

0
.
4
6
0

0
.
6
1
6

0
.
6
2
1

0
.
4
2
7

0
.
5
3
1

0
.
5
1
8

0
.
3
3
1

R
e
g
r
e
s
s
o
r

R
e
l
i
a
b
i
l
i
t
y

A
l
p
h
a
 
=
 
.
1
0

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

A
l
p
h
a
 
=
 
.
0
5

A
l
p
h
a
 
=
 
.
0
1

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

0
.
4
0

0
.
3
3
3

0
.
5
8
0

0
.
1
8
9

0
.
2
9
1

0
.
4
5
3

0
.
1
6
0

0
.
2
6
1

0
.
5
0
6

0
.
1
2
8

0
.
2
1
8

0
.
3
6
9

0
.
0
9
8

0
.
1
6
2

0
.
3
7
6

0
.
0
6
1

0
.
1
2
3

0
.
2
3
3

0
.
0
3
5

0
.
6
0

0
.
4
3
2

0
.
7
4
3

0
.
2
4
1

0
.
3
7
6

0
.
6
3
0

0
.
2
1
9

0
.
3
6
2

0
.
6
8
4

0
.
1
8
0

0
.
3
0
2

0
.
5
5
7

0
.
1
5
3

0
.
2
5
7

0
.
5
7
0

0
.
1
0
8

0
.
1
9
8

0
.
4
2
7

0
.
0
7
7

0
.
8
0

0
.
5
4
4

0
.
8
4
3

0
.
2
8
3

0
.
4
3
8

0
.
7
5
1

0
.
2
7
6

0
.
4
8
4

0
.
8
0
0

0
.
2
2
3

0
.
3
6
8

0
.
6
9
0

0
.
2
0
8

0
.
3
9
0

0
.
7
0
6

0
.
1
5
0

0
.
2
6
2

0
.
5
7
2

0
.
1
2
5

1
.
0
0

0
.
5
6
5

0
.
9
0
7

0
.
3
2
2

0
.
4
9
1

0
.
8
4
2

0
.
3
2
8

0
.
5
0
3

0
.
8
7
8

0
.
2
6
2

0
.
4
2
3

0
.
7
9
8

0
.
2
5
7

0
.
4
0
2

0
.
8
1
3

0
.
1
8
6

0
.
3
1
6

0
.
7
0
2

0
.
1
6
6

B
E

ST
 C

O
PY

A
V

A
IL

A
B

L
E

N
o
t
e
.
 
F
o
r
 
m
o
d
e
l
s
 
i
d
e
n
t
i
f
i
e
d
,
 
M
o
d
 
=
 
n
o
n
a
d
d
i
t
i
v
e
 
m
o
d
e
l
,
 
X
1
2
 
=
 
n
o
n
l
i
n
e
a
r
 
X
1
 
m
o
d
e
l
,
 
X
2
2
 
=
 
n
o
n
l
i
n
e
a
r
 
X
2
 
m
o
d
e
l

25



T
a
b
l
e
 
3
 
(
C
o
n
t
i
n
u
e
d
)

S
u
m
m
a
r
y
 
R
e
s
u
l
t
s
 
f
o
r
 
N
o
n
l
i
n
e
a
r
 
P
o
p
u
l
a
t
i
o
n
 
M
o
d
e
l
s
. A
l
p
h
a
 
=
 
.
1
0

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

A
l
p
h
a
 
=
 
.
0
5

A
l
p
h
a
 
=
 
.
0
1

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

S
a
m
p
l
e

S
i
z
e

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

6
0

0
.
3
3
0

0
.
5
9
3

0
.
1
9
0

0
.
2
6
9

0
.
4
6
4

0
.
1
6
9

0
.
2
5
6

0
.
5
1
9

0
.
1
2
9

0
.
1
9
4

0
.
3
7
9

0
.
1
0
6

0
.
1
5
3

0
.
3
9
0

0
.
0
6
1

0
.
0
9
6

0
.
2
4
0

0
.
0
3
9

1
7
5

0
.
4
7
9

0
.
8
0
1

0
.
2
6
2

0
.
4
0
7

0
.
6
9
7

0
.
2
4
5

0
.
4
1
2

0
.
7
4
9

0
.
2
0
1

0
.
3
3
3

0
.
6
3
1

0
.
1
7
8

0
.
3
0
8

0
.
6
4
5

0
.
1
2
8

0
.
2
2
7

0
.
5
0
6

0
.
1
0
0

4
0
0

0
.
5
9
6

0
.
9
1
1

0
.
3
2
4

0
.
5
2
1

0
.
8
4
5

0
.
3
2
3

0
.
5
3
9

0
.
8
8
2

0
.
2
6
5

0
.
4
5
6

0
.
8
0
0

0
.
2
5
3

0
.
4
4
7

0
.
8
1
4

0
.
1
8
9

0
.
3
5
2

0
.
7
0
4

0
.
1
6
3

E
f
f
e
c
t

S
i
z
e

A
l
p
h
a
 
=
 
.
1
0

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

A
l
p
h
a
 
=
 
.
0
5

A
l
p
h
a
 
=
 
.
0
1

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

F
u
l
l
 
S
a
m
p
l
e
 
A
n
a
l
y
s
i
s

S
u
b
s
a
m
p
l
e
 
A
n
a
l
y
s
i
s

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
e
l
 
I
d
e
n
t
i
f
i
e
d

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

M
o
d
.

X
1
2

X
2
2

0
.
0
2

0
.
2
7
3

0
.
5
1
4

0
.
1
6
5

0
.
2
2
8

0
.
3
9
8

0
.
1
5
3

0
.
1
9
9

0
.
4
2
4

0
.
1
0
3

0
.
1
5
5

0
.
3
0
6

0
.
0
9
2

0
.
1
0
6

0
.
2
7
2

0
.
0
3
8

0
.
0
6
8

0
.
1
6
6

0
.
0
3
1

0
.
1
5

0
.
5
2
6

0
.
8
6
4

0
.
2
8
3

0
.
4
4
6

0
.
7
6
0

0
.
2
6
7

0
.
4
6
0

0
.
8
2
3

0
.
2
2
2

0
.
3
7
2

0
.
6
9
8

0
.
1
9
9

0
.
3
5
4

0
.
7
2
9

0
.
1
4
6

0
.
2
6
0

0
.
5
7
4

0
.
1
1
6

0
.
3
5

0
.
6
0
7

0
.
9
2
7

0
.
3
2
8

0
.
5
2
4

0
.
8
4
8

0
.
3
1
6

0
.
5
4
8

0
.
9
0
3

0
.
2
7
0

0
.
4
5
6

0
.
8
0
6

0
.
2
4
6

0
.
4
4
9

0
.
8
4
7

0
.
1
9
5

0
.
3
4
6

0
.
7
1
0

0
.
1
5
6

B
E

ST
 C

O
PY

A
V

A
IL

A
B

L
E

N
o
t
e
.
 
F
o
r
 
m
o
d
e
l
s
 
i
d
e
n
t
i
f
i
e
d
,
 
M
o
d
 
=
 
n
o
n
a
d
d
i
t
i
v
e
 
m
o
d
e
l
,
 
X
1
2
 
=
 
n
o
n
l
i
n
e
a
r
 
X
1
 
m
o
d
e
l
,
 
X
2
2
 
=
 
n
o
n
l
i
n
e
a
r
 
X
2
 
m
o
d
e
l

27



U.S. Department of Education
Office of Educational Research and Improvement (OERI)

Educational Resources Information Center (ERIC)

REPRODUCTION RELEASE
(Specific Document)

I. DOCUMENT IDENTIFICATION:

Title:
The McClelland and Judd Approach :

Using "Four-Corners" Data to Detect Non linearity and Nonadditivity.

Author(s): Wendy B. Dickinson, Jeffrey D.Kromrey

Corporate Source: Publication Date:

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced
in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced
paper copy, and electronic/optical media, and sold through the ERIC Document Reproduction Service (EDRS) or other ERIC vendors. Credit is
given to the source of-each document, and, if reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following two options and sign at
the bottom of the page.

Check here
For Level 1 Release:
Permitting reproduction in
microfiche (4" x 6' film) or
other ERIC archival media
(e.g., electronic or optical)
and paper copy.

Sign
here)
pleaSe

The sample sticker shown below will be
affixed to all Level 1 documents

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL

HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Level 1

The sample sticker shown below will be
affixed to all Level 2 documents

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS

MATERIAL IN OTHER THAN PAPER
COPY HAS BEEN GRANTED BY

\e

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Level 2

Documents will be processed as indicated provided reproduction quality permits. If permission
to reproduce is granted, but neither box is checked, documents will be processed at Level 1.

Check here
For Level 2 Release:
Permitting reproduction in
microfiche (4- x 6" film) or
other ERIC archival media
(e.g., electronic or optical),
but not in paper copy.

'I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate
this document as indicated above. Reproduction from the ERIC microfiche or electronic optical media by persons other than
ERIC employees and its system contractors requires permission from the copyright holder. Exception is made for non-profit
reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries.'

S :

FAO 295
Dept. of M surement and Research

University of South Florida
4202 East Fowler Avenue Tampa,FL

ame/ ositron i e:

Wendy Dickinson

Telephone:

(813)974-3220
E-Mail Address:

FAX:

(813)974-4495
Date:

6-16-97



C UA

THE CATHOLIC UNIVERSITY OF AMERICA
Department of Education, O'Boyle Hall

Washington, DC 20064

800 464-3742 (G04-ERIC)

April 25, 1997

Dear AERA Presenter,

Hopefully, the convention was a productive and rewarding event. We feel you have a
responsibility to make your paper readily available. If you haven't done so already, please submit
copies of your papers for consideration for inclusion in the ERIC database. If you have submitted
your paper, you can track its progress at http://ericae2.educ.cua.edu.

Abstracts of papers accepted by ERIC appear in Resources in Education (RIE) and are announced
to over 5,000 organizations. The inclusion of your work makes it readily available to other
researchers, provides a permanent archive, and enhances the quality of RIE. Abstracts of your
contribution will be accessible through the printed and electronic versions of RIE. The paper will
be available through the microfiche collections that are housed at libraries around the world and
through the ERIC Document Reproduction Service.

We are soliciting all the AERA Conference papers and will route your paper to the appropriate
clearinghouse. You will be notified if your paper meets ERIC's criteria for inclusion in RIE:
contribution to education, timeliness, relevance, methodology, effectiveness of presentation, and
reproduction quality.

Please sign the Reproduction Release Form on the back of this letter and stet two copies of your
paper. The Release Form gives ERIC permission to make and distribute copies of your paper. It
does not preclude you from publishing your work. You can mail your paper to our attention at the
address below. Please feel free to copy the form for future or additional submissions.

Mail to:

Sincerely, j

AERA 1997/ERIC Acquisitions
The Catholic University of America
O'Boyle Hall, Room 210
Washington, DC 20064

Lawrence M. Rudner, Ph.D.
Director, ERIC/E

[ERIC I Clearinghouse on Assessment and Evaluation


